## Inverse Trig Practice-9/30/16

1. What is the sine, cosine, and tangent of  $\theta$  and of  $\phi$  in the following picture?



**Solution:**  $\sin(\theta) = 3/5$ ,  $\cos(\theta) = 4/5$ ,  $\tan(\theta) = 3/4$ ,  $\sin(\phi) = 4/5$ ,  $\cos(\phi) = 3/5$ ,  $\tan(\phi) = 4/3$ .

2.  $\arccos(\sqrt{3}/2) = ?$ 

Solution: Recall that  $\cos(\pi/6) = \sqrt{3}/2$ , so  $\arccos(\sqrt{3}/2) = \pi/6$ .

3.  $\sin^{-1}(\sqrt{3}/2) = ?$ 

Solution: Recall that  $\sin(\pi/3) = \sqrt{3}/2$ , so  $\sin^{-1}(\sqrt{3}/2) = \pi/3$ 

4. Draw the right triangle and use it to find the value of  $\cos(\sin^{-1}(12/13))$ .

**Solution:** If we let  $\sin^{-1}(12/13) = \theta$ , then 12 should be opposite of  $\theta$ , and 13 should be the hypotenuse. Then we can use the Pythagorean Theorem to fill in the last side, so the adjacent side will be 5. Then  $\cos(\theta) = 5/13$ .



5.  $\tan(\arccos(-\sqrt{2}/2)) = ?$ 

**Solution:** Recall that  $\cos(\pi/4) = \sqrt{2}/2$ . But here, our ratio is negative, so we need to figure out what  $\theta$  gives us that  $\cos(\theta) = -\sqrt{2}/2$ . Note that cos is negative where x is negative, that is in the second and third quadrants. If we reflect the triangle with angle  $\pi/4$  into each of these quadrants, we get  $3\pi/4$  and  $5\pi/4$  respectively. BUT recall that the range of  $\cos^{-1}$  is  $[0,\pi]$ . Since  $5\pi/4 > \pi$ , our angle can't be that. Thus we have  $\arccos(-\sqrt{2}/2) = 3\pi/4$ . The problem is actually asking us for the tangent of that, so  $\tan(3\pi/4) = -1$ .

6.  $\cos^{-1}(\sin(\pi/2)) = ?$ 

**Solution:** Recall that  $\sin(\pi/2) = 1$ , so we're actually looking for  $\cos^{-1}(1)$ . Since  $\cos(0) = 1$ , then  $\cos^{-1}(1) = 0$ .

7.  $\arctan(\cos(0)) = ?$ 

**Solution:** Since  $\cos(0) = 1$ , we're actually looking for  $\arctan(1)$ . This means that we're looking for an angle  $\theta$  so that  $\tan(\theta) = 1$ . Since  $\tan = \frac{\sin}{\cos}$ , then  $\frac{\sin(\theta)}{\cos(\theta)} = 1$ , so  $\sin(\theta) = \cos(\theta)$ . The only angle that fits that description is  $\pi/4$ .

8. Draw the right triangle and use it to find the value of  $sin(tan^{-1}(x))$ .

**Solution:** Let  $\tan^{-1}(x) = \theta$ . Then I know that x is opposite of  $\theta$  and 1 is adjacent to it, so let's solve for the hypotenuse. By the Pythagorean Theorem, it will be  $\sqrt{1+x^2}$ . Then sin is opposite over hypotenuse, so this gives us  $\frac{x}{\sqrt{1+x^2}}$ .



9. Draw the right triangle and use it to find the value of  $\cos(\sin^{-1}(x))$ .

**Solution:** Let  $\sin^{-1}(x) = \theta$ . Then I know that x is opposite of  $\theta$  and 1 is the hypotenuse, so let's solve for the adjacent side. By the Pythagorean Theorem, it will be  $\sqrt{1-x^2}$ . Then  $\cos$  is adjacent over hypotenuse, so this gives us  $\sqrt{1-x^2}$ .



10. Draw the right triangle and use it to find the value of sin(arccos(x)).

**Solution:** Solution: Let  $\arccos(x) = \theta$ . Then I know that x is adjacent to  $\theta$  and 1 is the hypotenuse, so let's solve for the opposite side. By the Pythagorean Theorem, it will be  $\sqrt{1-x^2}$ . Then sin is opposite over hypotenuse, so this gives us  $\sqrt{1-x^2}$ .

